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Obtained are exact solutions of Stefan's first boundary value problem in a form suitable for direct use. 
Many other known solutions are particular cases of  the class examined. 

Successful solution of  a whole range of current problems is closely linked with the question of  finding the tempera- 
ture or concentration field of a diffusing substance in the vicinity of a moving interface at which evolution or absorption 
of heat (or matter) takes place, the motion of the interface being itself determined by the unknown field. Most such 
problems lead to a nonIinear Stefan boundary value problem, the analysis and solution of which, even in the simplest 
cases, present serious mathematical  difficulty, and frequently demand the application of numerical methods and com- 
puters [1-4]. 

At the same time, in the investigation of a series of nonstationary problems of  heat conduction and diffusion by 
the methods of dimensional analysis, the heat conduction equation can often be reduced to a certain ordinary differen- 
tial equation, whose solution presents no practical difficulty [5, 6]. E. M. Shakhov [7], applying a similar method to 
the solution of the Stefan problem, obtained certain self-similar solutions Of it in an infinite space for plane, axial, and 
spherical symmetry. 

In this paper the system of heat conduction equations is reduced to ordinary equations by a somewhat modified 
method. 

P.lane Pro.b.lem in an Infni te  and Semi-Infinite Space 

We will examine the temperature field described by the equations 

du~ 20~u t  i 1 ,  2, 
dt = ai Oz ~ , (1) 

where ul(t,z) is defined in the reglon Z>~.(t) ,  and U2(t,z) in the region z-~(.( t) .  Here, 
the moving interface, the motion of which is given by Stefan's calorimetric condition 

= x l  - .  O z  

g(t) is the coordinate of 

(2) 

where o, k i are constants, the significance of  which depends on the specific problem examined. 

On the left side o f  Eqs. (1) is the total derivative, which emphasizes the fact that the functions ul(t.z), u2(t.z) 
may depend on t both explicitly and parametrically, through the interface coordinate g(t). We assume that ui(t,z) does 
not depend explicitly on t; it is well known that this is true of  very many actual processes in the steady-state phase. 
With the object of  more fully illustrating the method employed, we will examine the given problem in detail. 

Developing dui/dt in (1), we obtain 

du~ d t. 20~'ui 
O~ dt --a~ Oz 2 (3) 

In a space not possessing an effective dimension, the functions u i can depend only on the quantities o, ai ,  )'i, z, ~.~t) 
and on the quantities entering into the boundary conditions. It is easy to show that in the case of  the first boundary Value 
problem, i . e . ,  for 

lira u ~ z , ~ ) = T 1 ,  lira u2r (4) 

ut(~,~) ~, u2(~,~) = T2,  (5) 

where T i and T i are independent of time, the only independent dimensionless variable is x = z/g( t  ). Considering ui = 
= Ui(x), we can reduce the system of  equations (3) to a system of ordinary differential equations 
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d ~, d u  i 2 d~u, 
Z - -  - - - - - a i ~  

dt dx dx ~ 
From dimensional considerations it is also obvious that 

(6) 

d Udt = ~'~/2~, 

where 3z is some constant, having the dimension of thermal diffusivity. Relationship (7) and 

+ y t ,  

which follows from it, are necessary conditions for the self-similarity of  the process. Solving (6), 
(5), (7), we obtain 

where k i = Bi/2a i. 

ul(~) -" T~ + (T1 - -  T; )  

u2(x) = T ;  -F (T~ - -  T;)  

err k lx  - -  err kl 

1 . - -  err k~ 

err k2 - -  erf k~x 

I -@ erf  ke 

(7) 

(8) 

with account for (4), 

(9) 

Substituting x = z/g( t  ) from (8) in (9) and setting t = 0, we obtain the possible class of  initial conditions corre- 
sponding to the self-similar process of heated conduction reflected in (9): 

ui(~,) = ~i -F ,8i erf y~ Xo. (10) 

The particular case of  (9) with T~ = T~, ?'i = ~o is the known solution of [8]. It is easily seen that by appropriate 
choice of the quantities entering into (9), very different initial conditions can be satisfied. 

The constant ~2 can be easily determined from condition (2). 

In (5) the temperature was assumed capable of  taking different values on different sides of  the interface. Boundary 
conditions of this type can be useful in the approximate description of phase transitions in the temperature spectrum [5, 
9]. Indeed, in considering, for example, the freezing of  soil, we assume that the free water in the soil freezes at z = 
= zi(t), where the temperature T~ = 0, while final freezing of  the bound water takes place only at a certain negative 
temperature T~ corresponding to the level z = z2(t). Correct formulation of the problem requires examination of theheat  
conduction in the layer between zi(t) and z~(t) with the thermophysical characteristics of  the medium depending on z 
[9]. However, since the thickness of  this layer Az is usually small in comparison with the scale factors of  the process, 
it can be neglected, by choosing g(t) anywhere in the interval [zgt),  z2(t)] and assuming boundary conditions in the 
form (5). 

The concept of  a self-similar process can be generalized by introducing the natural idea of a "quasi self-similar" 
process, i . e . ,  a process described by functions of the form 

Ui : ~i(z) "~ : i (x) ,  (1.1) 

where the fi are solutions of Eqs. (6), and ~i are steady-state solutions of Eqs. (I). 

Retaining in (ii) only the independent arbitrary constants, we obtain in general form 

Ui(z.:) = Ciz + D~ + B i erfc  k i z/~(tl. (12) 

Functions (12) describing the quasiself-similar process are easy to obtain, if we require that the right side of  the calori-  
metric condition 2 with Ui(z,g) from (12) actually take the form (7). We obtain the condition 

)~1C1 = g~ C~. (la) 

As before, the constant B 2 is determined from (2). 

Thus, instead of  the four arbitrary constants appearing in the solution of (6) and typical of  a self-similar process, 
we have five independent constants, which can be varied. Expressions (12) allow us to satisfy certain new types of  bound- 
ary and initial conditions. We will demonstrate this on the example of  a half-space z _> 0. First of  all, we note that a 
half-space is also without a characteristic dimension, so that all the derived formulas still hold true. For example, if 

U2(o,<) ----- T~ (14) 
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we have D 2 = T 2 - t~. 
0 and (14) is satisfied, 

perature distribution: 

With Ci = 0 and conditions (4), (5), functions (12) give an analog of  the solution of [10]. If  C i # 
then (12), with account for (18), gives a solution corresponding to the following ini t ia l  tern- 

u~(~,<,) = Cz + D~ + Ba erfc k i -  z 

z 
u21~,~o} = Cz "4" T= --' B~ er[  k= . 

(o 

In this ease the temperature  at the moving surface z = g(t): 

u~,~) = ~ C l /  r.~ + 13~ t + D~ + Bj er~c/q, 

( t5)  

(16) 

u a : m  ---- C 1 / r  • ~2 t + T2 - -  e r [  k=, 

i. e . ,  depends on t ime.  In particular,  at g0 = 0 we have the solution for a l inear ini t ia l  temperature  distribution in a 
semi- in f in i t e  medium.  A similar  problem was solved by D. V. Redozubov [11] for the case when u2(~, ~) is a constant 

and ut(~,g) a var iable .  So far, we have considered the motion of  an interface in the positive direct ion of  the z axis. 
The  opposite case is comple te ly  similar  to that  examined,  and relations of the same type apply.  

Axial Symmetry 

Reasoning ent i rely analogously, we obtain in p lace  of  (6), (7), and (8), 

dr, (1 ) d~ h + . + 2k~ x = 0 ,  
dx~ dx \ x 

where fl(x) is defined at x >- 1, f=(x) at x ~ 1, and 

d R / d t =  ~2/2R., -R = K R ~  -1- [~ t .  

In this case the quasi se l f -s imi lar  solutions have the form 

(17) 

(18) 

= ( - - k ~  - ~ - )  ; (19) ui~,,Ri C i In r - r  Di q- B~Ei  2 r ~ 

in contrast with the plane problem the ca lor imet r ic  condition does not impose any l imi t a t ions  on the form of  the arbi-  

trary constants in (19). With Ci = 0 we obtain the se l f -s imi lar  solution of E. M. Shakhov [7]. It is easy to see how in 

this case Uz(r/R) has a logar i thmic  singularity at the point r = 0, which corresponds to 8bakhov's case of a point heat  
source (or sink) of  constant intensity. 

By varying the constants tn (19), we can obtain solutions for different in i t ia l  and boundary conditions. The only 
difference is that for the axisymmetr ic  problem there are six such constants, and not five. For example ,  the condition 

of  constant temperature  at the interface (cylinder of  radius R(t)) wiU be Ci = 0. The condition for absence of  a singular 
point r = 0 (no-source condition) is written thus: 

2C2 + B~ ---- O. (2o) 

The la t ter  is s imple to obtain,  using the representation of an integral  exponential  function 

X 

E i ( - - x ) = C §  e x p ( - - ~ )  1 d %  ! -g 

where C = 0. 5772. . .  is Euler's constant. 

We shall examine the quas i se l f - s imi la r  processes satisfying (20) in more deta i l .  First of  all ,  with C 2 -= 0 and 

U2(o,;~-- T2, ulcn,;~l = T1, l i m  t l i{r,R ) ----- T 1 ,  , (21) 

we have the solution m the problem examined  by D. E. Temkin in connect ion with the  question of  mel t ing  of a cy l in-  
der [12]. Consequently, in spite of  the assertion of  E. M. 8hakhov that his Solution is the only axisymmetr ic  solution of 

the Stefan problem for se l f - s imi la r  processes [7], the mlut lon 

560 



u~ == Te, u,(r,R ) = T~ q- (T~ - -  T~) Ei(  - -  k~r2/R2)/Ei( - -  le~), ( 2 2 )  

describing, for example, the melting and crystallization of  an infinite cylinder on the assumption that the thermal dif- 
fusivity of  the internal region (r <- R(t)) is much higher than that of the external zone, is also typically self-similar. AU 
other solutions (19) not having a singular point at r = 0 lead to a variable value of the temperature on the insidd of ' the 
heat front: 

ult~,R) = D], + C1 In r + B1 Ei ( - -  k~rVR2), 
(23) 

U2(r.R) = D2 -k B, [Ei (--le~r~/R ~) - -  2 ln rl. 

In particular, with C z = 0, Eqs. (23) describe the thermal processes in a medium, whose temperature at  infinity is equal 
t o  D I. 

So far, we have examined the problem of an expanding interface. Converging motion, directed toward the axis of  
symmetry, is conveniently examined by introducing the new variable y = 1/x = R/r. Analysis shows that In this case the 
solution, as before, has the form (19). Physically this is easy to understand, considering that the corresponding processes 
(melting - crystallization, vaporization - condensation) are reversible. 

As before, the constant/52 must be determined from condition (2). 

Sp_herical Symmetry 

Repeating the calculations, we have in this case in place of (12) or (19) 

where the function 

ui(r.R) = Di -~ .,C! + Bi ierfckzx 
y x 

r 
- - ,  x - -  , (24) 

/ ? . )  

1 
ie r fcz  = _ r - - - -=  exp  ( - - z  2) - -  ze r fc  z 

~ V  

was introduced by D. V. Redozubov [11]. 

The conditions of quasiself-similarity, 
form 

corresponding to condition (13) for the plane problem, is written in the 

),1C1--- 1,2 C2. (25) 

The temperature at the moving interface will not depend on t ime if C i = 0. The condition of  absence of  singularities 
assumes the form 

R 
Ci  -t- B2 ~ = 0 or C~ = B2 = 0.  (26) 

The self-similar solution of E. M. Shakhov is a special case of  (24) with Ci = 0. There is also a second self-similar solu- 
tion, corresponding to constant temperature inside the sphere R(t). This solution can be used for a mathematical  descrip- 
tion of  the vaporization of droplets. The general spherically-symmetric problem does not differ in principle from those 
already examined; therefore all that has been said about the plane or axially symmetric problem applies in this case too. 

NOTATION 

~ z  _ a certain constant, having the dimension of thermal diffusivity; erfx - error integral; a i, Bi, and 7i - con- 
stants which may be varied by changing T i, T~*, and g0; x = z/~.  
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